

ELIZADE UNIVERSITY ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATION

2016 / 2017 ACADEMIC SESSION

COURSE CODE: CSC 432

COURSE TITLE: Operations Research

COURSE LEADER: Dr. O. Oriola

DURATION: 2½ Hours

HOD's SIGNATURE	

INSTRUCTION:

Candidates should answer any FOUR (4)Questions

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence

Students are permitted to use ONLY a scientific calculator.

Question 1

- a. Operations Research involves managerial decision making, mathematical and computer modeling and the use of information technology for informed decisionmaking. Explain!
- bi. State the functions of five scientific methods used in Operations Research.
- ii. List two applications of each scientific method in practice.
- c. What is an Optimization Problem? How does it apply to Cost-Benefit Ratio estimation?

Question 2

- a. The essence of the Operations Research activity lies in the construction and use of models. What are the significances of models?
- b. State the factors to consider in the choice of models in Operations Research. What types of models are suitable for use based on each factor?
- c. Explain Five Principles of Modelling in Operations Research.

Question 3

- a. What are the steps involved in formulating a Linear Programming Problem? Write the standard form of a Linear Programming Problem.
- b. Using graphical method, find the optimal values of x, y and Z for the following LP problems:

(i.) Min
$$Z = 6x + 8y$$
 subject to
 $2x + 3y \le 16$
 $4x + 2y \le 16$
 $x, y \ge 0$

(ii.) Min
$$Z = 80x + 70y$$
 subject to

$$2x + y \le 32$$

$$x + y \le 18$$

$$x + 3y \ge 36$$

$$x, y \ge 0$$

Question 4

- a. Explain the following: (i.) Feasible Solution (ii.) Basic Variable (iii.) Slack Variable
 (iv.) Artificial variable (v.) Unbounded Solution
- b. A toy company manufactures two types of doll, a basic version-doll, A and a deluxe version-doll, B. Each doll of type B takes twice as long to produce as one of type A, and the company would have time to make a maximum of 2000 per day. The supply of plastic is sufficient to produce 1500 dolls per day (both A and B combined). The deluxe version requires a fancy dress of which there are only 600 per day available. If the company makes a profit of Rs. 3.00 and Rs. 5.00 per doll, respectively on doll A and B, then

- i. How many of each dolls will be produced per day in order to maximize the total profit?
- ii. What maximum profit is possible? (Hint: Use any method of your choice)

Question 5

- a. What are the steps involved in Simplex Method of solving Linear Programming Problem.
- b. Using Simplex method, find the optimal values of x, y, z and P given that:

Question 6

- a. State the steps involved in solving Transportation and Assignment Problems.
- b. Formulate a Linear Programming Model for the Assignment Problem below:

33	x_n	40	x ₁₂	43	<i>x</i> ₁₃	32	X ₁₄
45	X ₂₁	28	x ₂₂	31	x ₂ ,	23	X ₂₄
42	х,,	29	X33	36	<i>x</i> ₃₃	29	х ₃₄
27	X ₄₁	42	X ₄₂	44	X 43	38	X44

c. Using VOGEL Approximation approach, find the initial feasible solution for the problem below if F represent the factory and W represent the warehouse:

	w_{i}	W_2	W_{j}	Supplies	
F,	48	60	56	140	
F_z	45	55	53	260	
F_{j}	50	65	60	360	
F_4	52	64	55	220	
Demand	200	320	250	_	

Note: Cell entries are the unit transportation costs.